Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74
1.
Methods Mol Biol ; 2757: 269-287, 2024.
Article En | MEDLINE | ID: mdl-38668972

Light-sensitive Ca2+-regulated photoproteins of ctenophores are single-chain polypeptide proteins of 206-208 amino acids in length comprising three canonical EF-hand Ca2+-binding sites, each of 12 contiguous residues. These photoproteins are a stable complex of apoprotein and 2-hydroperoxy adduct of coelenterazine. Addition of calcium ions to photoprotein is only required to trigger bright bioluminescence. However, in contrast to the related Ca2+-regulated photoproteins of jellyfish their capacity to bioluminescence disappears on exposure to light over the entire absorption spectral range of ctenophore photoproteins. Here, we describe protocols for expression of gene encoding ctenophore photoprotein in Escherichia coli cells, obtaining of the recombinant apoprotein of high purity and its conversion into active photoprotein with synthetic coelenterazine as well as determination of its sensitivity to calcium ions using light-sensitive Ca2+-regulated photoprotein berovin from ctenophore Beroe abyssicola as an illustrative case.


Calcium , Ctenophora , Escherichia coli , Imidazoles , Luminescent Proteins , Ctenophora/genetics , Ctenophora/metabolism , Calcium/metabolism , Animals , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Gene Expression , Cloning, Molecular/methods , Pyrazines/metabolism
2.
Methods Mol Biol ; 2757: 289-306, 2024.
Article En | MEDLINE | ID: mdl-38668973

The functional screening of cDNA libraries (or functional cloning) enables isolation of cDNA genes encoding novel proteins with unknown amino acid sequences. This approach is the only way to identify a protein sequence in the event of shortage of biological material for obtaining pure target protein in amounts sufficient to determine its primary structure, since sensitive functional test for a target protein is only required to successfully perform functional cloning. Commonly, bioluminescent proteins from representatives belonging to different taxa significantly differ in sequences due to independent origin of bioluminescent systems during evolution. Nonetheless, these proteins are frequently similar in functions and can use even the same substrate of bioluminescence reaction, allowing the use of the same functional test for screening. The cDNA genes encoding unknown light-emitting proteins can be identified during functional screening with high sensitivity, which is provided by modern light recording equipment making possible the detection of a very small amount of a target protein. Here, we present the protocols for isolation of full-size cDNA genes for the novel bioluminescent protein family of light-sensitive Ca2+-regulated photoproteins in the absence of any sequence information by functional screening of plasmid cDNA expression library. The protocols describe all the steps from gathering animals to isolation of individual E. coli colonies carrying full-size cDNA genes using photoprotein berovin from ctenophore Beroe abyssicola as an illustrative example.


Cloning, Molecular , Ctenophora , DNA, Complementary , Gene Library , Luminescent Proteins , Animals , Ctenophora/genetics , Ctenophora/metabolism , Cloning, Molecular/methods , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , DNA, Complementary/genetics , Escherichia coli/genetics , Escherichia coli/metabolism
3.
Life (Basel) ; 13(5)2023 May 21.
Article En | MEDLINE | ID: mdl-37240867

Luciferases from copepods Metridia longa and Gaussia princeps are successfully used as bioluminescent reporters for in vivo and in vitro assays. Here, we report the minimal sequence of copepod luciferases required for bioluminescence activity that was revealed by gradual deletions of sequence encoding the smallest MLuc7 isoform of M. longa luciferase. The single catalytic domain is shown to reside within the G32-A149 MLuc7 sequence and to be formed by both non-identical repeats, including 10 conserved Cys residues. Because this part of MLuc7 displays high homology with those of other copepod luciferases, our suggestion is that the determined boundaries of the catalytic domain are the same for all known copepod luciferases. The involvement of the flexible C-terminus in the retention of the bioluminescent reaction product in the substrate-binding cavity was confirmed by structural modeling and kinetics study. We also demonstrate that the ML7-N10 mutant (15.4 kDa) with deletion of ten amino acid residues at the N-terminus can be successfully used as a miniature bioluminescent reporter in living cells. Application of a shortened reporter may surely reduce the metabolic load on the host cells and decrease steric and functional interference at its use as a part of hybrid proteins.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122885, 2023 Nov 05.
Article En | MEDLINE | ID: mdl-37247552

The phenomenon of fluorescence is widely used in molecular biology for studying the interaction of light with biological objects. In this article, we present an experimental investigation of the enhancement of laser-induced fluorescence of Clytia gregaria green fluorescent protein. The laser-induced fluorescence method applied in our work combines the advantages of femtosecond laser pulses and a photonic crystal cavity, with the time dependence of the fluorescence signal studied. It is shown that a green fluorescent protein solution placed in a microcavity and excited by femtosecond laser pulses leads to an increase in fluorescence on the microcavity modes, which can be estimated by two orders of magnitude. The dependences of fluorescence signal saturation on the average integrated optical pump power are demonstrated and analyzed. The results obtained are of interest for the development of potential applications of biophotonics and extension of convenient methods of laser-induced fluorescence.


Lasers , Photons , Fluorescence , Green Fluorescent Proteins , Time Factors
5.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article En | MEDLINE | ID: mdl-37047842

Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear. In particular, which ionic state of dioxetanone intermediate decomposes to yield a coelenteramide in an excited state and the role of the water molecule residing in a proximity to the N1 atom of 2-hydroperoxycoelenterazine in the bioluminescence reaction are still under discussion. With the aim to elucidate the function of this water molecule as well as to pinpoint the amino acid residues presumably involved in the protonation of the primarily formed dioxetanone anion, we constructed a set of single and double obelin and aequorin mutants with substitutions of His, Trp, Tyr, and Ser to residues with different properties of side chains and investigated their bioluminescence properties (specific activity, bioluminescence spectra, stopped-flow kinetics, and fluorescence spectra of Ca2+-discharged photoproteins). Moreover, we determined the spatial structure of the obelin mutant with a substitution of His64, the key residue of the presumable proton transfer, to Phe. On the ground of the bioluminescence properties of the obelin and aequorin mutants as well as the spatial structures of the obelin mutants with the replacements of His64 and Tyr138, the conclusion was made that, in fact, His residue of the Tyr-His-Trp triad and the water molecule perform the "catalytic function" by transferring the proton from solvent to the dioxetanone anion to generate its neutral ionic state in complex with water, as only the decomposition of this form of dioxetanone can provide the highest light output in the light-emitting reaction of the hydromedusan photoproteins.


Aequorin , Protons , Aequorin/genetics , Aequorin/chemistry , Water , Protein Conformation , Luminescent Proteins/metabolism , Mutagenesis , Calcium/metabolism , Luminescent Measurements
6.
Sci Rep ; 12(1): 19613, 2022 11 15.
Article En | MEDLINE | ID: mdl-36379962

Coelenterazine-v (CTZ-v), a synthetic vinylene-bridged π-extended derivative, is able to significantly alter bioluminescence spectra of different CTZ-dependent luciferases and photoproteins by shifting them towards longer wavelengths. However, Ca2+-regulated photoproteins activated with CTZ-v display very low bioluminescence activities that hampers its usage as a substrate of photoprotein bioluminescence. Here, we report the crystal structure of semi-synthetic Ca2+-discharged obelin-v bound with the reaction product determined at 2.1 Å resolution. Comparison of the crystal structure of Ca2+-discharged obelin-v with those of other obelins before and after bioluminescence reaction reveals no considerable changes in the overall structure. However, the drastic changes in CTZ-binding cavity are observed owing to the completely different reaction product, coelenteramine-v (CTM-v). Since CTM-v is certainly the main product of obelin-v bioluminescence and is considered to be a product of the "dark" pathway of dioxetanone intermediate decomposition, it explains the low bioluminescence activity of obelin and apparently of other photoproteins with CTZ-v.


Calcium, Dietary , Calcium , Calcium/metabolism , Protein Conformation , Luminescent Proteins/metabolism , Luminescent Measurements
7.
Biophys Rev ; 14(4): 765-767, 2022 Aug.
Article En | MEDLINE | ID: mdl-36124281

Here is a brief summary of presentations made by the participants of the "Bioluminescence and Photonics of Fluorescent Proteins" session at the 9th Congress of the Russian Photobiological Society which were dedicated to basic studies on bioluminescence systems of different organisms as well as to various analytical applications of bioluminescent proteins. Many questions to the speakers and in-depth and comprehensive discussion of the results obtained demonstrated the researchers' interest in this field of Photobiology.

8.
Biochem Biophys Res Commun ; 624: 23-27, 2022 10 08.
Article En | MEDLINE | ID: mdl-35932575

The bright bioluminescence of ctenophores inhabiting the oceans worldwide is caused by light-sensitive Ca2+-regulated photoproteins. By now, the cDNAs encoding photoproteins from the four different ctenophore species have been cloned and the recombinant proteins have been characterized to some extent. In this work, we report on the specific activity and the quantum yield of bioluminescence reaction as well as the absorbance characteristics of high-purity recombinant berovin. To determine those, we applied the amino acid composition analysis to accurately measure berovin concentration and the recombinant aequorin as a light standard to convert relative light units to quanta. The extinction coefficient of 1% berovin solution at 435 nm was found to be 1.82. The one can be employed to precisely determine the protein concentration of active photoproteins from other ctenophore species. The specific activity and the bioluminescence quantum yield were respectively found to be 1.98 × 1015 quanta/mg and 0.083. These values appeared to be several times lower than those of the cnidarian photoproteins, which is obviously due to differences in amino acid environments of the substrate in active sites of these photoproteins.


Ctenophora , Aequorin/genetics , Aequorin/metabolism , Amino Acids/metabolism , Animals , Calcium/metabolism , Ctenophora/chemistry , Ctenophora/genetics , Luminescent Measurements , Luminescent Proteins/metabolism
9.
Methods Mol Biol ; 2524: 59-73, 2022.
Article En | MEDLINE | ID: mdl-35821463

The small coelenterazine-dependent luciferase from Metridia longa (MLuc), in view of its high activity, simplicity of bioluminescent (BL) reaction, and stability, has found successful analytical applications as a genetically encoded reporter for in vivo assessment of cellular processes. However, the study on the biochemical and BL properties and the development of in vitro analytical applications of MLuc are hampered by the difficulties of obtaining a sufficient amount of the highly active recombinant protein due to the presence of multiple (up to five) disulfide bonds per molecule. Here, we present a protocol to obtain the recombinant disulfide-rich MLuc using a cheap and simple Escherichia coli expression system without any affinity tags in its native form by refolding from inclusion bodies. The method includes (i) purification of MLuc inclusion bodies, solubilization of the aggregated form with full reduction of disulfide bonds, and refolding to the native state using a glutathione redox system in the presence of arginine and Cu2+ ions and (ii) chromatographic purification of MLuc and its functional assessment in terms of activity. We introduce the empirical, optimal conditions for oxidative refolding and subsequent purification of MLuc, with its basic properties taken into account. We believe that this protocol is adaptable for a large-scale harvest of other natively folded copepod luciferases as well as other disulfide-rich recombinant proteins from E. coli inclusion bodies.


Copepoda , Escherichia coli , Animals , Disulfides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Inclusion Bodies/metabolism , Luciferases/chemistry , Luciferases/genetics , Oxidation-Reduction , Oxidative Stress , Recombinant Proteins/chemistry
10.
Methods Mol Biol ; 2524: 75-89, 2022.
Article En | MEDLINE | ID: mdl-35821464

Secreted copepod luciferases (CopLucs) represent highly homologous enzymes which catalyze the oxidation of a low molecular weight substrate, coelenterazine, with the emission of blue light (λmax = 485-488 nm), that is called bioluminescence (BL). The well-studied Gaussia (GLuc) and Metridia (MLuc) luciferases originally cloned from the marine copepods Gaussia princeps and Metridia longa belong to the group of the smallest natural luciferases. Their minimal molecular weight, high luminescent activity, cofactor-independent BL, and the ability to be secreted due to the own signal peptide open up the horizons for genetic engineering of CopLuc-based sensitive biosensors for in vivo imaging and in vitro analytical applications. The "standard" soluble bacterial expression of the recombinant CopLucs and luciferase-based hybrid proteins is hampered by the presence of high amounts of intramolecular disulfide bonds (up to 5 per molecule). Here, we describe the universal protocol for highly effective secreted expression of disulfide-rich CopLucs using their own signal peptide in insect cells and their purification from serum-free culture medium. The suggested protocol allows obtaining high-purity CopLucs folded in their native form with the yield of up to 5 mg per liter.


Copepoda , Amino Acid Sequence , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Copepoda/genetics , Disulfides/chemistry , Luciferases/metabolism , Protein Sorting Signals
11.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article En | MEDLINE | ID: mdl-36613724

Light emission by living organisms in the visible spectrum range is called bioluminescence [...].


Luminescent Measurements , Luminescent Proteins/genetics
12.
Photochem Photobiol ; 98(1): 275-283, 2022 01.
Article En | MEDLINE | ID: mdl-34727376

Nowadays the recombinant Ca2+ -regulated photoproteins originating from marine luminous organisms are widely applied to monitor calcium transients in living cells due to their ability to emit light on Ca2+ binding. Here we report the specific activities of the recombinant Ca2+ -regulated photoproteins-aequorin from Aequorea victoria, obelins from Obelia longissima and Obelia geniculata, clytin from Clytia gregaria and mitrocomin from Mitrocoma cellularia. We demonstrate that along with bioluminescence spectra, kinetics of light signals and sensitivities to calcium, these photoproteins also differ in specific activities and consequently in quantum yields of bioluminescent reactions. The highest specific activities were found for obelins and mitrocomin, whereas those of aequorin and clytin were shown to be lower. To determine the factors influencing the variations in specific activities the fluorescence quantum yields for Ca2+ -discharged photoproteins were measured and found to be quite different varying in the range of 0.16-0.36. We propose that distinctions in specific activities may result from different efficiencies of singlet excited state generation and different fluorescence quantum yields of coelenteramide bound within substrate-binding cavity. This in turn may be conditioned by variations in the amino acid environment of the substrate-binding cavities and hydrogen bond distances between key residues and atoms of 2-hydroperoxycoelenterazine.


Aequorin , Hydrozoa , Aequorin/metabolism , Animals , Calcium/metabolism , Hydrozoa/metabolism , Kinetics , Luminescent Proteins/metabolism
13.
Protein Sci ; 31(2): 454-469, 2022 02.
Article En | MEDLINE | ID: mdl-34802167

Coelenterazine-v (CTZ-v), a synthetic derivative with an additional benzyl ring, yields a bright bioluminescence of Renilla luciferase and its "yellow" mutant with a significant shift in the emission spectrum toward longer wavelengths, which makes it the substrate of choice for deep tissue imaging. Although Ca2+ -regulated photoproteins activated with CTZ-v also display red-shifted light emission, in contrast to Renilla luciferase their bioluminescence activities are very low, which makes photoproteins activated by CTZ-v unusable for calcium imaging. Here, we report the crystal structure of Ca2+ -regulated photoprotein obelin with 2-hydroperoxycoelenterazine-v (obelin-v) at 1.80 Å resolution. The structures of obelin-v and obelin bound with native CTZ revealed almost no difference; only the minor rearrangement in hydrogen-bond pattern and slightly increased distances between key active site residues and some atoms of 2-hydroperoxycoelenterazine-v were found. The fluorescence quantum yield (ΦFL ) of obelin bound with coelenteramide-v (0.24) turned out to be even higher than that of obelin with native coelenteramide (0.19). Since both obelins are in effect the enzyme-substrate complexes containing the 2-hydroperoxy adduct of CTZ-v or CTZ, we reasonably assume the chemical reaction mechanisms and the yields of the reaction products (ΦR ) to be similar for both obelins. Based on these findings we suggest that low bioluminescence activity of obelin-v is caused by the low efficiency of generating an electronic excited state (ΦS ). In turn, the low ΦS value as compared to that of native CTZ might be the result of small changes in the substrate microenvironment in the obelin-v active site.


Calcium , Luminescent Measurements , Calcium/metabolism , Hydrogen Bonding , Luminescent Proteins/chemistry , Protein Conformation
14.
J Phys Chem B ; 125(37): 10452-10458, 2021 09 23.
Article En | MEDLINE | ID: mdl-34520210

Bioluminescence of a number of marine organisms is conditioned by Ca2+-regulated photoprotein (CaRP) with coelenterazine as the reaction substrate. The reaction product, coelenteramide, at the first singlet excited state (S1) is the emitter of CaRP. The S1-state coelenteramide is produced via the decomposition of coelenterazine dioxetanone. Experiments suggested that the neutral S1-coelenteramide is the primary emitter species. This supposition contradicts with theoretical calculations showing that the anionic S1-coelenteramide is a primary product of the decomposition of coelenterazine dioxetanone. In this study, applying molecular dynamic (MD) simulations and the hybrid quantum mechanics/molecular mechanics (QM/MM) method, we investigated a proton-transfer (PT) process taking place in CaRP obelin from Obelia longissima for emitter formation. Our calculations demonstrate a concerted PT process with a water molecule as a bridge between anionic S1-coelenteramide and the nearest histidine residue. The low activation barrier as well as the strong hydrogen-bond network between the proton donor and the proton acceptor suggests a fast PT process comparable with that of the lifetime of excited anionic S1-coelenteramide. The existence of the PT process eliminates the discrepancy between experimental and theoretical studies. The fast PT process at emitter formation can also take place in other CaRPs.


Hydrozoa , Protons , Animals , Hydrogen Bonding , Luminescent Proteins
15.
Org Lett ; 23(17): 6846-6849, 2021 09 03.
Article En | MEDLINE | ID: mdl-34416112

Ca2+-regulated photoproteins of ctenophores lose bioluminescence activity when exposed to visible light. Little is known about the chemical nature of chromophore photoinactivation. Using a total synthesis strategy, we have established the structures of two unusual coelenterazine products, isolated from recombinant berovin of the ctenophore Beroe abyssicola, which are Z/E isomers. We propose that during light irradiation, these derivatives are formed from 2-hydroperoxycoelenterazine via the intermediate 8a-peroxide by a mechanism reminiscent of that previously described for the auto-oxidation of green-fluorescent-protein-like chromophores.


Ctenophora/chemistry , Imidazoles/chemistry , Luminescent Proteins/chemistry , Pyrazines/chemistry , Animals , Calcium/chemistry , Calcium/metabolism , Light , Molecular Structure
16.
Article En | MEDLINE | ID: mdl-33834429

Active hydromedusan and ctenophore Ca2+-regulated photoproteins form complexes consisting of apoprotein and strongly non-covalently bound 2-hydroperoxycoelenterazine (an oxygenated intermediate of coelenterazine). Whereas the absorption maximum of hydromedusan photoproteins is at 460-470 nm, ctenophore photoproteins absorb at 437 nm. Finding out a physical reason for this blue shift is the main objective of this work, and, to achieve it, the whole structure of the protein-substrate complex was optimized using a linear scaling quantum-mechanical method. Electronic excitations pertinent to the spectra of the 2-hydroperoxy adduct of coelenterazine were simulated with time-dependent density functional theory. The dihedral angle of 60° of the 6-(p-hydroxy)-phenyl group relative to the imidazopyrazinone core of 2-hydroperoxycoelenterazine molecule was found to be the key factor determining the absorption of ctenophore photoproteins at 437 nm. The residues relevant to binding of the substrate and its adopting the particular rotation were also identified.

17.
Int J Mol Sci ; 21(21)2020 Oct 22.
Article En | MEDLINE | ID: mdl-33105848

Considerable efforts have been focused on shifting the wavelength of aequorin Ca2+-dependent blue bioluminescence through fusion with fluorescent proteins. This approach has notably yielded the widely used GFP-aequorin (GA) Ca2+ sensor emitting green light, and tdTomato-aequorin (Redquorin), whose bioluminescence is completely shifted to red, but whose Ca2+ sensitivity is low. In the present study, the screening of aequorin mutants generated at twenty-four amino acid positions in and around EF-hand Ca2+-binding domains resulted in the isolation of six aequorin single or double mutants (AequorinXS) in EF2, EF3, and C-terminal tail, which exhibited markedly higher Ca2+ sensitivity than wild-type aequorin in vitro. The corresponding Redquorin mutants all showed higher Ca2+ sensitivity than wild-type Redquorin, and four of them (RedquorinXS) matched the Ca2+ sensitivity of GA in vitro. RedquorinXS mutants exhibited unaltered thermostability and peak emission wavelengths. Upon stable expression in mammalian cell line, all RedquorinXS mutants reported the activation of the P2Y2 receptor by ATP with higher sensitivity and assay robustness than wt-Redquorin, and one, RedquorinXS-Q159T, outperformed GA. Finally, wide-field bioluminescence imaging in mouse neocortical slices showed that RedquorinXS-Q159T and GA similarly reported neuronal network activities elicited by the removal of extracellular Mg2+. Our results indicate that RedquorinXS-Q159T is a red light-emitting Ca2+ sensor suitable for the monitoring of intracellular signaling in a variety of applications in cells and tissues, and is a promising candidate for the transcranial monitoring of brain activities in living mice.


Aequorin/genetics , Calcium/metabolism , Luminescent Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Aequorin/metabolism , Animals , Brain/diagnostic imaging , CHO Cells , Calcium/pharmacology , Cricetulus , EF Hand Motifs , HEK293 Cells , Humans , Luminescent Measurements , Luminescent Proteins/genetics , Mice, Inbred C57BL , Mutation , Nerve Net , Organ Culture Techniques , Protein Stability , Receptors, Purinergic P2Y2/genetics , Receptors, Purinergic P2Y2/metabolism , Recombinant Fusion Proteins/genetics
18.
Int J Mol Sci ; 21(15)2020 Jul 30.
Article En | MEDLINE | ID: mdl-32751691

Ca2+-regulated photoproteins responsible for bioluminescence of a variety of marine organisms are single-chain globular proteins within the inner cavity of which the oxygenated coelenterazine, 2-hydroperoxycoelenterazine, is tightly bound. Alongside with native coelenterazine, photoproteins can also use its synthetic analogues as substrates to produce flash-type bioluminescence. However, information on the effect of modifications of various groups of coelenterazine and amino acid environment of the protein active site on the bioluminescent properties of the corresponding semi-synthetic photoproteins is fragmentary and often controversial. In this paper, we investigated the specific bioluminescence activity, light emission spectra, stopped-flow kinetics and sensitivity to calcium of the semi-synthetic aequorins and obelins activated by novel coelenterazine analogues and the recently reported coelenterazine derivatives. Several semi-synthetic photoproteins activated by the studied coelenterazine analogues displayed sufficient bioluminescence activities accompanied by various changes in the spectral and kinetic properties as well as in calcium sensitivity. The poor activity of certain semi-synthetic photoproteins might be attributed to instability of some coelenterazine analogues in solution and low efficiency of 2-hydroperoxy adduct formation. In most cases, semi-synthetic obelins and aequorins displayed different properties upon being activated by the same coelenterazine analogue. The results indicated that the OH-group at the C-6 phenyl ring of coelenterazine is important for the photoprotein bioluminescence and that the hydrogen-bond network around the substituent in position 6 of the imidazopyrazinone core could be the reason of different bioluminescence activities of aequorin and obelin with certain coelenterazine analogues.


Aequorin/metabolism , Luminescent Proteins/chemistry , Aequorin/chemical synthesis , Aequorin/chemistry , Animals , Calcium/metabolism , Hydrogen Bonding/drug effects , Imidazoles/chemistry , Imidazoles/pharmacology , Luminescent Proteins/chemical synthesis , Luminescent Proteins/metabolism , Mutagenesis, Site-Directed , Protein Conformation/drug effects , Pyrazines/chemistry , Pyrazines/pharmacology
19.
Int J Mol Sci ; 21(14)2020 Jul 14.
Article En | MEDLINE | ID: mdl-32674504

Bioluminescent proteins are widely used as reporter molecules in various in vitro and in vivo assays. The smallest isoform of Metridia luciferase (MLuc7) is a highly active, naturally secreted enzyme which, along with other luciferase isoforms, is responsible for the bright bioluminescence of marine copepod Metridia longa. In this study, we report the construction of two variants of a hybrid protein consisting of MLuc7 and 14D5a single-chain antibody to the surface glycoprotein E of tick-borne encephalitis virus as a model fusion partner. We demonstrate that, whereas fusion of a single-chain antibody to either N- or C-terminus of MLuc7 does not affect its bioluminescence properties, the binding site on the single-chain antibody influences its binding capacity. The affinity of 14D5a-MLuc7 hybrid protein (KD = 36.2 nM) where the C-terminus of the single-chain antibody was fused to the N-terminus of MLuc7, appeared to be 2.5-fold higher than that of the reverse, MLuc7-14D5a (KD = 87.6 nM). The detection limit of 14D5a-MLuc7 hybrid protein was estimated to be 45 pg of the recombinant glycoprotein E. Although the smallest isoform of M. longa luciferase was tested as a fusion partner only with a single-chain antibody, it is reasonable to suppose that MLuc7 can also be successfully used as a partner for genetic fusion with other proteins.


Copepoda/genetics , Luciferases/genetics , Protein Isoforms/genetics , Recombinant Fusion Proteins/genetics , Animals , Cloning, Molecular/methods , Encephalitis Viruses, Tick-Borne/genetics , Glycoproteins/genetics , Luminescent Measurements/methods , Single-Chain Antibodies/genetics
20.
Photochem Photobiol ; 96(5): 1047-1060, 2020 09.
Article En | MEDLINE | ID: mdl-32416626

Calcium-regulated photoproteins are found in at least five phyla of organisms. The light emitted by those photoproteins can be tuned by mutating the photoprotein and/or by modifying the substrate coelenterazine (CTZ). Thirty years ago, Shimomura observed that the luminescence activity of aequorin was dramatically reduced when the substrate CTZ was replaced by its analog v-CTZ. The latter is formed by adding a phenyl ring to the π-conjugated moiety of CTZ. The decrease in luminescence activity has not been understood until now. In this paper, through combined quantum mechanics and molecular mechanics calculations as well as molecular dynamics simulations, we discovered the reason for this observation. Modification of the substrate changes the conformation of nearby aromatic residues and enhances the π-π stacking interactions between the conjugated moiety of v-CTZ and the residues, which weakens the charge transfer to form light emitter and leads to a lower luminescence activity. The microenvironments of CTZ in obelin and in aequorin are very similar, so we predicted that the luminescence activity of obelin will also dramatically decrease when CTZ is replaced by v-CTZ. This prediction has received strong evidence from currently theoretical calculations and has been verified by experiments.


Calcium/chemistry , Imidazoles/chemistry , Luminescent Measurements/methods , Luminescent Proteins/chemistry , Pyrazines/chemistry , Models, Theoretical , Molecular Dynamics Simulation , Protein Conformation , Quantum Theory
...